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Analysis and practical application of third-order phase-lock design have been
sporadic, compared with the second-order, in both the servomechanism and tele-
communication fields. The attractiveness of minimal tracking errors resulting from
near “perfect” third-order filtering (three true integrators) has been largely offset
by undesirable acquisition properties and to some extent by a dearth of analysis of
this configuration. A useful approach, both in viewpoint and in design, is to con-
sider the prevalent “imperfect” second-order and third-order configurations for
what they are—namely, loops with one integrator augmented by one or two lag
time constants, so proportioned with respect to loop gain as to approximate the
closed-loop response of true second- and third-order configurations, while manifest-
ing a controlled (but not infinite) improvement in tracking performance over the
first-order loop. This article seeks to apply this approach to the existing work in
third-order analysis, and to emphasize the principal effects, both positive and
negative, of the relative proportioning of loop gain and time constants, with a view

toward practical exploitation of the best features of these loop configurations.

I. Introduction

Many works on phase-locked loops commence with
first-order, progress to second-order, touch upon third-
order, and then revert to an extensive treatment of
second-order loops. While true that the latter is the most
prevalent application, it seems clear that this sequence
and depth of analysis are, in part, due to the fact that exact
mathematical models exist for the first-order loop and
quite adequate, but approximate, models exist for the
second-order loop; and only tentative optimizations have
appeared for the third-order loops. The word “tentative”
is used here to imply that while there have existed theo-
retically optimum designs (Ref. 1) for the tracking of input
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signals of specified characteristics, they may have lacked
acceptable acquisition or stability properties over a range
of input signal-to-noise ratios.

One of the more recent and detailed treatments (Ref. 2)
of third-order loops appears to have made a significant
step in overcoming these detrimental characteristics by
evolving new optimization criteria. Whether by design or
circumstance, this treatment by Tausworthe and Crow
(Ref. 2) is closely structured to a “parallel” loop filter—that
is, one which sums the output of a single-pole filter with
that of a double-pole filter. This, coupled with the notation
adopted, lends itself admirably to the switched second-to-
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third order or “hybrid” application, as well as to a
“straight” third-order design in which it is of interest to
compare performance with that of the loop which results
from the single-pole filter path only.

The purpose of this article is to apply the results and
exactitude of the referenced work to a more conventional
configuration by establishing an equivalence of the loop
configurations and a somewhat re-oriented notation. This
article will concern itself specifically with the optimum
design and application of the third-order loop confronted
with a variable signal level. Fortuitously, this condition is
virtually sufficient to establish the equivalence mentioned
above. Therefore, this treatment will be equally applicable
to both configurations. A further purpose is to summarize
and extend the analysis to include optimum investment of
the third-order characteristic and to establish a direct
comparison with second-order tracking performance given
the same circuit technology.

II. The General Transfer Function

Consider the phase-locked loop whose open-loop trans-
fer function is
Cls) = G (14 Tys)(1+ Tys)

s (14 Tys) (1 + Tss) &

This loop has been considered (Ref. 3) with intuitive time
constant scaling, but represents the form for which we
seek a more rigorous and detailed analysis. Let us now
proceed to develop a specific notation and optimization,
borrowing heavily from Tausworthe (Refs. 2 and 4) and
Hoffman (Ref. 5).

Tausworthe’s parallel filter open-loop model is of the
form

@ =25F(

AK [ 1+ 78 1 ‘
T s [1+ns+(1+ﬂs)(s+ms)} 2)

with the following definitions:

k - 72/73
€ = TQ/TI
r= AKTE/TI

AK = open-loop gain at zero frequency
(second-order path)

AK ,
—— = open-loop gain at zero frequency

2 (third-order path)
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An optimum value for k has been established for which
the loop will be unconditionally stable for all higher
values of signal level, that is, for r = r, (design point). This
value is 1/4, subject to the restriction that the third-order
lag time constant (r;/8) be much larger than the lead com-
pensation (r.). This restriction is directly analogous to the
usual second-order assumption of r./7; = € < < 1.

lll. Establishing Equivalence
Rewrite Eq. (2):

AK 1+ 1.8 n 1
s 1+ s (l + 718) (3 - 758)

and, with a little manipulation,

&) = ASK (1:3)

[1 + <
X
(4)

The numerator is factorable with negative real roots, pro-
vided 8 << 1 and

G'(s) =

) TaTs
>(72 73/3)S+<m> 3 S:I

(1 + TIS) (l + 73/8 S)

73

8z (7'2 + —8'> = 47273 (5)

Examination of Eq. (4) reveals r, and ,/8 to be the
lag time constants, and r, and r, to be the approximate
lead time constants and, therefore, § represents the ap-
proximate lead-lag ratio, thus justifying the § < <1
approximation for moderate-to-high-performance loops.
By similar reasoning,

T + ‘;—; =~ l;‘
and Eq. (5) becomes

'r§ = 47)7;

T2 _ ~__].-

o k= 4

Thus, we find the necessary condition for cascaded equiv-
alence to be identical to the aforementioned criterion for
stability versus signal level, namely, k = 1/4. A term-by-
term comparison of Eqgs. (1) and (4), that is, setting
G (sy = G’ {(s), now yields
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+ 8 AK
G=4K ( 5 >~T
T1 — 71
]
T.T, = ’f% =TTy
(6)
d7s +
T, + T, = —ﬁ ~r
and, setting 7,/75 = 1/4,
_ T, 1
(T, + T, 4
T2 = T4 = = 27’2

2

The open-loop transfer function may now be written as

e (1 + T.s)?
Glo) =5 [(1 T TS (0 Tss):l )
with relations (3) restated in terms of Eq. (7):
— T2
€T eT,
8 T,
s_ L 8
4 T, ®
A
TTY T,

A word about approximations is perhaps in order at this
point. The two measures of “imperfection” of the circuit
“integrators” (e and 8k or 8/4) will, for clarity, be taken
as much less than unity, but never assumed to be zero.
Indeed, the design “management” of these two small
quantities (and related loop gain) constitutes a significant
set of design tradeoffs. Therefore, only the first-order
effects of € and § will usually be considered.

The definitions and equivalences of (3) and (6) are sum-
marized in Appendix A. The identities and subsequent
definitions based upon Eq. (7) are listed in Appendix B.
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In order to establish the design point (minimum) value
of the loop-gain-related variable, r, consider the closed-
loop transfer function

H(s) =

1 + 2T.s + Tis?
T, + T, T,T,
1+<1+—1~>2T2s+(1+—-i——>T2 2 q 12

2GT GT3

or

1+ 2T,s + T3s?

H(s) =
1,T,

Tausworthe’s criterion of no underdamped roots in the
interest of reliable acquisition can be applied by examin-
ing the characteristic equation, obtained by substitution:

or 4r 2
T, T3

A standard test for no imaginary roots reveals that

27
To = ? (10)

r

As with the second-order loop, performance will be a func-
tion of r/r,, since

1For instance, the relations in (8) result from approximations in the
establishment of equivalence and r could be written more exactly as

_G T
2(1+8) T.T,
On the other hand, one can take the view that once the equivalence
and related optimizations have been established, relations in (8) be-
come exact definitions for the cascade configuration. In fact, unpub-
lished notes have defined a quantity
_cr
q - TlT:{

yielding the equivalence relation

r=

qg=2r(1 + 8§) =2r
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In the material that follows, G and r will usually be writ-
ten as such for generality; however, r, = 27/8 will be im-
plicitly assumed, especially in the next section dealing
with approximations of comparative performance.

IV. Design Considerations
A. Definitions

We have now expended two of our five degrees of free-
dom?—that is, ratio of leads (function of k) and (design
point) damping, r = r,. Before investigating further the
properties of the third-order loop, let us define:

o =G (11)
o = (—T—%T—)/ (12)
o = (TGTY (13)

By standard operations on Eq. (9), we see that o, relates to
(steady-state) phase error due to frequency offset and 3 to
phase error due to a frequency ramp. Referring to Fig. 1,
we see that v is the radian frequency at which the open-
loop transfer function would pass through unity gain were
it not for the lead compensation, T.. As such, o; bears a
close relationship to the bandwidth of the closed-loop
response.

The distinctive advantage of the third-order over
second-order loop lies in the ability to set o, greater than
vs. In the second-order loop, ., or as usually written,
on = (G/7,)*%, represents both the closed-loop bandwidth
and the reciprocal root of the ramp error coeflicient.

B. Performance Factor

Let us define a performance factor, F, corresponding to
the italicized statement above; that is,

T, + T, G

Fo= (s 3T1T32:GT1(%>2
() (8 7,

2Physically represented by G, Ti, T, Ts, Ts.
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or, alternatively,

T\ %
GVT,T, <T—)
1

T
F2 = (GVRE Gﬁ)w (15)

T,
(1 + Tl)

We now find that given constant gain and bandwidth,
and therefore constant GV T, T, F is maximized when

T,=T, o ==
)
resulting in
_(GT% _ (2rys
gpt - 2 - 4€ (16)

The conclusions here are that (1) for any given band-
width and gain, the ramp error will be minimized when
T, = T, (equal lags), and (2) the G\ T, T, or GT, product
is a measure of “how much third-order characteristic” is
embodied in the design.

Now, let us generalize upon this result. As defined
above, F = u,/0, is a measure of third-order performance,
but is based upon the €, § < < 1 simplification. While this
is a useful design assumption in many cases, a more gen-
eral definition of F is

Reciprocal root of ramp error coefficient ®s

- Open-loop (undamped) unity gain frequency o,

x

The previously used expression for the numerator,

G 1%
w2 [Tl + T:|

can be seen to be applicable over the full range of 0=
T;/T1= 0. On the other hand, the denominator of F,
may be obtained by setting the absolute value of Eq. (7)
to unity, yielding

T.T.\* , , [(To+ Ts\* _2T.T, ok
(&) =+ [(Fem) - furE
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The solution of this expression for o, is not conveniently
expressible over the full range of T,/T,. However, it will
be stated without proof that whereas the unity gain
frequency w, equals o; for moderate ratios of Ts/T;, o,
approaches [G/T,]% or [G/T;]* as T,/T, approaches
zero or infinity, respectively, and that

o} o}
Fi="fxl1+= (17)

Or o3

Now consider a second-order loop of fixed G and T}, aug-
mented by T, as T,/T, increases from zero to infinity.

From Egs. (14) and (17), we can now write

T3 24

141t
T,

This expression is plotted with GT, as a parameter in
Fig. 2. This presentation offers an insight to the effect of
T5: As it increases (relative to T,) from zero, it represents
the typical “extra time constant” (Ref. 8) in a second-order
loop until it becomes a stability “problem” in the transi-
tional region, where it increases over 1/w, to bring about
a third-order characteristic. As T./T, eventually exceeds
GT,, the loop reverts to one of second order, now with T,
as the principal time constant and T, in the role of “extra.”

The asymmetry of the curves results from the situation
chosen for illustration, i.e., constant G and T',. If we now
fix our attention near T,/T, = 1 and ask: “How does the
performance vary with T,/T,, given a constant gain and
closed-loop bandwidth,” we get

@VTT(3)"

T,
(r+7)

Consider now the time constant required by a second-
order loop compared to a third-order design, again hold-
ing constant the gain and closed-loop bandwidth. By

setting vy = 03,
G _ G \*%
T \T.T,

7.12nd

Fr=1+

as plotted in Fig. 3.

T12nd
—22 = (GV T,T,)*%
T.T, ( Te)
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or, if weset T, =T,,

’;nd = (GT,)% = 2F3,

or, in terms of second-order measure,

o = o

Since the GT, product is always a large number (see Fig. 1
and Appendix B), we find that the v./v,; performance ad-
vantage is accompanied by a reduction in required time
constant for the case under consideration (w, = w; and
G = G). The inverse statement of this effect (i.e., main-
taining constant gain and time constant, third-order design
offers narrower bandwidth) appears later in the section
dealing with steady-state error.

It must be noted that because », has been chosen as
representative of closed-loop bandwidth in the definition
of F, Figs. 2 and 3 and the equations of this paragraph
implicitly set r = r, < < F,,. For this reason, numerical
application of this paragraph is not generally warranted
for G > G,.

C. Design Conclusions

The titles “Normalized ramp performance” for Figs. 2
and 3 arise through squaring the original definition of
F, above and by noting that for the second-order loop,
wr = wg = wn. In other words, F% or o3/} may be con-
sidered as either the ratio of ramp performance for the
two loop orders or, alternatively, as a measure of third-
order ramp performance normalized to bandwidth.

Indeed, as F, approaches unity, by definition, second-
order performance prevails; similarly, as F, approaches
infinity, an “ideal” third-order loop is manifested, with in-
finitesimal steady-state errors. But extremely large values
of loop gain and/or time constant are neither practically
achievable nor necessarily desirable from an overall per-

formance standpoint.

In summary, then, with or without the exact optimiza-
tion of T, = T, (it is difficult to envision a circumstance
where this should not be applied), the fifth degree of
freedom?® consists of “modulating” the GT, product with
respect to bandwidth selection in achieving a compromise

3As noted eatlier, the ratio of leads and damping have been con-
sidered established; we may now consider T\ versus T; and closed-
loop bandwidth the third and fourth degrees, respectively.
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between steady-state tracking errors and problems of de-
sign and performance associated with high GT,. Some
of these performance characteristics will be examined in
the next section.

V. Performance Characteristics*
A. Closed-Loop Frequency Response

Referring back to the approximate form of Eq. (9), and
to the design point value of r given in Eq. (10), we may
write
1— T2 + 20T,

—_ 272 H —_ — 373
1 (i3] Tg + 1 ( T 27 T2>
and the loop error
4 d 3
, —ig7 T
1 — H (jo) = Ay

4
1 — o?T3 +i(2mTz > 3T3)

The absolute values of these functions have been plotted
in Fig. 4 with respect to the normalized /v, for a third-
order loop in comparison to the familiar second-order
curves given as a function of o/wn.

B. Loop Noise Bandwidth®
It has been shown that

r—k+1
2BL=WL=§3[W]

which may be rewritten in the cascade notation as

4r + 3
2P = W=, <4r = 1) (22)
891 27
28, =W, = 2007, ’ given r = r, = r

or, in terms of v, = (G/T,T;)%:

P\%( G \%[4r+3
wew(3) (zr) (7=1) @

297 (1)30
100 (2% ~

2B, =W, = =~ 23605,

+Unless otherwise specified, ¢ and §/4 are assumed to be much less
than unity, but greater than zero. Also, the equivalences of Eq. (6)
apply throughout.

58; and W, are in hertz; all other frequencies are in radians/second.
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For the second-order loop, we have

r+1

2B =W, =—5 (24)
2
r+1/G\%
28, =W, = 2V7(T_1> (25)
3 »
2'8Lo = Wl‘o = 5, ~ 1.06 Ongys given r = r, = 2

C. Steady-State Error

The steady-state error in response to an input of Q (¢)
instantaneous frequency offset and A, rate of change of
frequency is given by

Q1) T,+ T,
G + Ao c

Dy =

or, in the case of T, = T,

Q) 2T, _ Q1)

By = G + Ay C —T—l‘ w? (26)
For the second-order loop,
o) Q)
b, = el +AOG=_G_+¢»2 (27)

Comparing these two expressions, we can formulate
another second-to-third-order loop comparison as follows.
Given a second-order loop design of G, 7, and appropri-
ate damping, a third-order loop may be formed by halving
the r, filter and placing the halves in series as T, and T,,°
maintaining the same G and readjusting the damping; the
resulting third-order loop will have exactly the same
steady-state phase error due to offset and ramp as the
given loop and will have a noise bandwidth approximately
1/F,,: times narrower.

D. Acquisition Range

For the ideal (no hardware biases or nonlinearities)
noiseless case, it has been shown that the maximum fre-
quency pull-in range is given by

%
Qoéi[zﬁ (1 + 8)]
Ta Ty )
6Conservation of time constant T; + T = r,, while probably not a

usual design concept, is of economic as well as mathematical con-
sequence.
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which, for third-order, § << 1 and T, = T, reduces to

2 2
OéVT:’= ,}/7 \VGT. (28)

and, for second-order, § > > 1, yields

= Es—’?= Vi e, (29)

Ta

In terms of gain (G) and bandwidth (1/7. or 1/T,), we
find that pull-in ranges for the second- and third-order
loops are comparable and yet there is a difference of €%
in terms of bandwidth only (1/r. or 1/T.). This arises
from the fact that for the T, = T, third-order loop, G is
proportional to €2, whereas for the second-order, G varies
as €. This effect can also be observed for steady-state
error. That is, for a given bandwidth, second-order step
error varies as € and ramp error as €°, while third-order
step error varies as €2 and ramp error as €%, even though
Eqgs. (26) and (27) are essentially identical as expressed in
terms of G and -, or T,. Obviously, extreme care must
be exercised in the drawing of comparative conclusions.
These relationships result directly through application
of the identities of Appendix B. Appendix C attempts
to catalog these relationships by relating the orders-of-
magnitude, in terms of € and of G, of second- and third-
order performance.

Returning to acquisition, unpublished work of Taus-
worthe shows that in the presence of hardware drift
referred to phase error, 6, expressed in radians, pull-in
from one side is not simply reduced in range in proportion
to 94G, but is conditional upon initial conditions of the
acquisition process, unless

10, <VZe

for the T, = T, third-order loop. So, while for negligible
64, pull-in range will be enhanced as €, § - 0, the existence
of a finite #,; will bound the useful €, § unless circumstances
of acquisition (initial conditions) are well controlled.

E. Design Limitations

We have found that, in general, performance character-
istics of tracking loops arc all enhanced as €, 8 — 0, either
in the secondary sense of validation of approximations or
in the primary sensc of steady-state tracking errors. How-
ever, in the paragraph above, we encountered a limitation.
Other considerations of practical implementations which
are negative attributes of high-gain designs include:
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(1) Cost and resistance shunting (leakage) of large
capacitors and of extremely high-gain operational
amplifier configurations.

(2) Unpredictability of performance under conditions
of leakage versus time, environment, and hardware
sample. This can be partially overcome through the
use of compensating circuit configurations, such as
with capacitance in an operational feedback con-
figuration, gain and time constant are equally
affected by shunting, thus yielding a constant G/T
ratio and consequent stabilization of some aspects
of performance.

(3) Design difficulties related to saturation of opera-
tional amplifiers and VCOs.

(4) Acquisition uncertainties duc to input noise and
hardware drift.

(5) Operational limitations resulting from combinations
of the above.

Since these limitations are so dependent upon specific cir-
cuit technologies and configurations, as well as particular
performance applications, it would be virtually impossible
to offer any comprchensive analytical treatment of these
effects. Rather, the approach here has been an attempt to
clarify the performance through the perspectives and rela-
tionships established earlier and summarized in Appen-
dix C, thus allowing the designer to choose an appropriate
loop order and gain to just satisfy his performance objec-
tives while realizing a tolerable set of “ncgative” effects.

F. Acquisition Strategies

While considering closed-loop (tracking) performance,
it may have been noted that the two extra degrees of
freedom (T, and T,) available in third-order loop design
were spent early, in the interest of stability and minimiza-
tion of ramp error (T, = T. and T, = T,). To put it more
directly, third-order design and second-order design both
reduce to a choice of loop gain and bandwidth. This
rationale assumes that the established values of design
point damping are beyond question for the variable signal
level tracking loop. Actually, for the third-order design,
the criterion of critical damping at design point (r, =
27/8), in the interest of reliable acquisition, may be a bit
conservative. As with the second-order practice of r, = 2,
one could design for a slight underdamping at design
point and still realize unconditional stability at all higher
signal levels. While rigorously related mathematically (see
Appendices A and B and Refs. 2 and 4), the significance
of a given value of , in each loop order is somewhat differ-
ent. It has been pointed out that more analysis in this area
may be enlightening.
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Assuming now that all the foregoing has established a
tracking design, there are two commonly used strategies
of acquisition taken together or separately that alter the
loop (additional external aids such as frequency sweeping
will not be considered here). Firstly, one can seek to con-
trol the initial conditions—commonly implemented and
referred to as either “open” or “shorted” loop. Extra care
must be exercised here for third-order design due to the
existence of twice as many repositories for initial charge
as in the more familiar second-order design. And secondly,
one may choose to modify one or more of the five loop
parameters to enhance pull-in range or time and/or to
reduce (until lock is achieved) the effect of a hardware
imperfection. Several strategies that have been used in
second-order applications are:

(1) Reduce 7, and 7, constant gain and e.
(2) Reduce 7, constant gain and ..

(3) Reduce r, and r,, constant gain and r.

The first reduces acquisition time but doesn’t affect acqui-
sition range; the second does both, and the third is a com-
pletely new bandwidth design, etc.

Now, to consider additional possibilities for the third
order, a switched second-to-third-order loop strategy is
possible; also, gain switching with or without time con-
stant switching has been utilized to some extent. To illus-
trate the complexity of the problem, one can readily imag-
ine a circumstance wherein one would face a dilemma in
loop gain: Considerations of pull-in time or range might
seem to demand an increased gain during acquisition and

yet this might invoke problems related to initial conditions
and equipment drift (4,). The answer in a given situation
might lie in switching one or more time constants in addi-
tion to or instead of loop gain. Here, again, the relation-
ships of Appendix C may provide the insight to achieve a
workable strategy. The significant point is that, with sev-
eral degrees of freedom available (criteria established for
optimum tracking performance are not necessarily appli-
cable during acquisition), the difference, for instance, in
a linear and a square root dependence may offer the
answer to a given situation.

VL. Concluding Remarks

Partial conclusions have been drawn as the discussion
and analysis proceeded above. Suffice it to say here that
it is hoped that this treatment has provided a “feel” for
the characteristics and relationships of the third-order
loop, not only in an absolute sense, but in relation to
second-order characteristics. And, perhaps most impor-
tantly, some of the stigma of operational unreliability of
this device has hopefully been removed through demon-
stration that a number of undesirable acquisition and
design characteristics tend to result not from the loop
order but from the application of excessive loop gain in
the guise of more “perfect” low-pass “integrators.”

In summary, third-order design can offer (other things
equal) reduced time constant requirement, narrower
closed-loop bandwidth, reduced tracking errors or com-
binations of these with slight increase in complexity over
typical high-performance second-order designs.

106

References

. Viterbi, A. J., Principles of Coherent Communication, p. 66. McGraw-Hill Book

Co., Inc., New York, 1966.

. Tausworthe, R. C., and Crow, R. B., Practical Design of Third-Order Phase-

Locked Loops, Report 900-450, Apr. 27, 1971 (JPL internal document).

. Gardner, F. M., Phaselock Techniques, p. 15. John Wiley & Sons, Inc., New York,

1966.

. Tausworthe, R. C., Theory and Practical Design of Phase-Locked Receivers,

Technical Report 32-819. Jet Propulsion Laboratory, Pasadena, Calif., Feb. 15,
1966.

. Hoffman, L. A., Receiver Design and the Phase-Lock Loop. The Aerospace

Corporation, El Segundo, Calif., May 1963.

. Rechtin, E., Design of Phase-Lock Oscillator Circuits, Section Report No. 8-566,

Feb. 7, 1957 (JPL internal document).

JPL TECHNICAL REPORT 32-1526, VOL. Vil



log IG([w)l —

10° | |
/\//_GVT]Ts =0
—
DT
S (
X
37
N
100 -// \~\
107!
1072 00% 10% 10% 1 13 18 107 102 1010
T3/T] OR4¢/s
Fig. 3. Normalized ramp performance
(fixed G and bandwidth)
10
oo *)/
n
0 = >3
L Wi
1N i)
n
logw — / AN
-10 7 e \\ ™
. . / N
Fig. 1. Idealized open-loop frequency response = / N
N
-20 / \\
/ \\
/
103 ' N
9 / N
- GT, =10 -30(—
7
2 THIRD-ORDER / THIRD ORDER, r = ry
10" ™ Loor /
s — — — SECOND ORDER, r = 2
- GT, = 10 -40 .
. 0.1 1.0 10 50
10 w/w,
TRANSITIONAL
REGION .
. | N~ Fig. 4. Closed-loop frequency response
| l
Z(SECOND—ORDER LOOP
]o'] l ’ ‘
1002107 10 10 1% 10 e 107 102 10’8

T3/T] OR 4¢/3

Fig. 2. Normalized ramp performance
(fixed G and T,)

JPL TECHNICAL REPORT 32-1526, VOL. Vil

107




Appendix A

Summary of Definitions and Equivalences

Definitions (from Refs. 2 and 4)
k= 1/,
€= 73/11
r= AKr}/m _

AK = Open-loop gain of second-order portion of
“parallel” configuration at zero frequency

AK

= = Open-loop gain of third-order portion of
“parallel” configuration at zero frequency
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Equivalences (given k = 1/4 and § << 1)

-k (1) 4K

8 8

T1

73

= 272
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Appendix B

Summary of Derived Identities and Definitions

Basic Identities Supplemental Definitions
€= o, = G = Reciprocal step (frequency) error coefficient
2T, p P
2T
§ =72 e
T, 0y = m—] = Reciprocal square root of ramp
C \T -1 8 (frequency) error coefficient
_ - 2
"TRTT,
r G 1%
ws = | T F :| = Natural (undamped) frequency
| 1113
Derived Identities
_ 4
General T, =T, W, = [E} *= Natural (undamped) frequency and re-
T.  4e m ciprocal square root of ramp (frequency)
T—3 =3 1 error coefficient for second-order loop
aT. — - T oy = Open loop (undamped) unity gain frequency;
VT8 4’ equal to o, for third-order and to «, or «, for
second-order loop
2r r
GT, = Se %€
F = 22 = A performance factor relating ramp error to
2 sc 1eC “*  closed-loop bandwidth
T,
VT = 2 r F,=2=A lization of F f 5 f t
GV TT. = : L P = generalization of F for any 8 from zero to
T (8ep® de * infinity, holding € < < 1
y g
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Appendix C

Characteristics Versus G Versus Gain, GivenT,=T_,1<r<10

This figure is perhaps best interpreted as an order-of-magnitude conversion chart for € and G for each loop order. The
T; =~ r, normalization and notes allow superposition of the principal characteristics.

110

LOGARITHMIC FREQUENCY ——

e_:’;/T2 — 5

THIRD ORDER

SECOND ORDER

GO/TZ 1 I J
1/2
1 (GT) o1 (o1

2 T2 T2 T2

LOGARITHMIC FREQUENCY —»

3/2

]

BANDWIDTH, BOTH ORDERS; RECIPROCAL ROOT RAMP COEFFICIENT, SECOND ORDER

]
2 RECIPROCAL ROOT RAMP COEFFICIENT, THIRD ORDER

3 MAXIMUM PULL-IN RANGE, BOTH ORDERS

4 RECIPROCAL STEP ERROR COEFFICIENT, BOTH ORDERS

5 (GT2)3/2 = GT, (THIRD ORDER) = (Gr])3/4 (SECOND ORDER)
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